To solve quadratic equations using the quadratic formula, the given quadratic equation must be in the form of 

ax2 + bx + c  =  0

We can substitute the values of a, b, and c into the formula shown below and solve the quadratic equation given. 

Example 1 :

Solve the quadratic equation using quadratic formula :

x2 – 5x – 24  =  0

Solution : 

The given quadratic equation is in the form of 

ax2 + bx + c  =  0

Comparing 

x2 – 5x – 24  =  0

and 

ax2 + bx + c  =  0

we get 

a  =  1, b  =  -5 and c  =  -24

Substitute the above values of a, b and c into the quadratic formula. 

Therefore, the solution is

{-3, 8} 

Example 2 :

Solve the quadratic equation using quadratic formula :

x2 – 7x + 12  =  0

Solution : 

The given quadratic equation is in the form of 

ax2 + bx + c  =  0

Comparing 

x2 – 7x + 12  =  0

and 

ax2 + bx + c  =  0

we get 

a  =  1, b  =  -7 and c  =  12

Substitute the above values of a, b and c into the quadratic formula. 

Therefore, the solution is

{3, 4}

Example 3 :

Solve the quadratic equation using quadratic formula :

15x2 – 11x + 2  =  0

Solution : 

The given quadratic equation is in the form of 

ax2 + bx + c  =  0

Comparing 

15x2 – 11x + 2  =  0

and 

ax2 + bx + c  =  0

we get 

a  =  15, b  =  -11 and c  =  2

Substitute the above values of a, b and c into the quadratic formula. 

Therefore, the solution is

{2/5, 1/3}

Example 4 :

Solve the quadratic equation using quadratic formula :

x + 1/x  =  2½ 

Solution : 

Write the given quadratic equation in the form :

ax2 + bx + c  =  0

Then,

x + 1/x  =  2½

x2/x + 1/x  =  5/2

(x2 + 1)/x  =  5/2

2(x2 + 1)  =  5x

2x2 + 2  =  5x

2x2 - 5x + 2  =  0

Comparing 

2x2 - 5x + 2  =  0

and 

ax2 + bx + c  =  0

we get 

a  =  2, b  =  -5 and c  =  2

Substitute the above values of a, b and c into the quadratic formula. 

Therefore, the solution is

{1/2, 2}

Example 5 :

Solve the quadratic equation using quadratic formula :

(x + 3)2 - 81  =  0 

Solution : 

Write the given quadratic equation in the form :

ax2 + bx + c  =  0

Then, 

(x + 3)2 - 81  =  0

(x + 3)(x + 3) - 81  =  0

x2 + 3x + 3x + 9 - 81  =  0

x2 + 6x - 72  =  0

Comparing 

x2 + 6x - 72  =  0

and 

ax2 + bx + c  =  0

we get 

a  =  1, b  =  6 and c  =  -72

Substitute the above values of a, b and c into the quadratic formula. 

Therefore, the solution is

{-12, 6}

Comments

Popular posts from this blog

Alphabets In The Urdu Language